We care about your data, and we'd like to use cookies to give you a smooth browsing experience. Please agree and read more about our privacy policy.
Quanta Homepage
  • Physics
  • Mathematics
  • Biology
  • Computer Science
  • Topics
  • Archive
Interactive: What Is Space?
Comment
Read Later
Share
Facebook
Twitter
Copied!
Copy link
Email
Pocket
Reddit
Ycombinator
Flipboard
    • Comment
      Comments
    • Read Later
    Previous: The Quantum Fabric of Space-TimeHow Quantum Pairs Stitch Space-Time
    SERIES
    The Quantum Fabric of Space-Time

    Interactive: What Is Space?

    By Thomas Lin

    April 30, 2015

    Imagine the fabric of space-time peeled back layer by layer.
    Comment
    Read Later
    Thomas Lin
    By Thomas Lin

    Editor in Chief


    April 30, 2015


    View PDF/Print Mode
    black hole information paradoxcosmologygeneral relativitymultimediaphysicsquantum gravityquantum physicsspace-timeThe Quantum Fabric of Space-TimeAll topics

    Introduction

    In 1915, Albert Einstein’s field equations of gravitation revolutionized our understanding of space, time and gravity. Better known as general relativity, Einstein’s theory defined gravity as curves in the geometry of space-time, overturning Isaac Newton’s classic theory and correctly predicting the existence of black holes and gravity’s ability to bend light. But a century later, the fundamental nature of space-time remains shrouded in mystery: Where does its structure come from? What do space-time and gravity look like in the subatomic quantum realm?

    The short answer is that we don’t know. But many physicists, writes Jennifer Ouellette in “How Quantum Pairs Stitch Space-Time,” have long “suspected a deep connection between quantum entanglement — the ‘spooky action at a distance’ that so vexed Albert Einstein — and space-time geometry at the smallest scales.” How might entanglement stitch together the structured fabric of space-time? One compelling recent idea, writes K.C. Cole in “Wormholes Untangle a Black Hole Paradox,” suggests that quantum entanglement “could be creating the ‘spatial connectivity’ that ‘sews space together,’ according to Leonard Susskind, a physicist at Stanford University and one of the idea’s main architects.” This idea, though still in its infancy, would solve the troublesome black hole firewall paradox and, enticingly, could help explain quantum gravity.

    To illustrate how space-time might arise from quantum entanglement, Quanta Magazine invited Owen Cornec, a data visualization fellow at Harvard University’s John F. Kennedy School of Government, to imagine peeling back layers of space to find a network of entanglements. The resulting interactive presentation serves as the third installment of our series on “The Quantum Fabric of Space-Time.”

    As you explore Cornec’s immersive virtual world, it’s worth noting that it does not attempt to convey how entanglement actually “sews space together” (no one knows what that would look like exactly, or even if this is how reality works), or to depict the holographic concept or the wormholes mentioned in the first two parts of this series.

    In developing this interactive experience — with art guidance from Quanta designer Olena Shmahalo — Cornec said he used WebGL technology (check here if your browser supports WebGL; mobile devices and unsupported browsers will default to a screencast video) to create the three-dimensional environment. “I simply placed the Milky Way, Earth and 3-D networks in close succession so that we may easily fly through each level in a straight line,” he said, adding that he built a custom camera with logarithmic scaling to be able to quickly zoom from the astronomically large to the infinitesimally small.

    Share this article
    Facebook
    Twitter
    Copied!
    Copy link
    Email
    Pocket
    Reddit
    Ycombinator
    Flipboard

    Newsletter

    Get Quanta Magazine delivered to your inbox

    Recent newsletters
    Thomas Lin
    By Thomas Lin

    Editor in Chief


    April 30, 2015


    View PDF/Print Mode
    black hole information paradoxcosmologygeneral relativitymultimediaphysicsquantum gravityquantum physicsspace-timeThe Quantum Fabric of Space-TimeAll topics
    Share this article
    Facebook
    Twitter
    Copied!
    Copy link
    Email
    Pocket
    Reddit
    Ycombinator
    Flipboard

    Newsletter

    Get Quanta Magazine delivered to your inbox

    Recent newsletters
    Prev
    The Quanta Newsletter

    Get highlights of the most important news delivered to your email inbox

    Recent newsletters

    Comment on this article

    Quanta Magazine moderates comments to facilitate an informed, substantive, civil conversation. Abusive, profane, self-promotional, misleading, incoherent or off-topic comments will be rejected. Moderators are staffed during regular business hours (New York time) and can only accept comments written in English. 

    Next article

    How Quantum Pairs Stitch Space-Time
    Quanta Homepage
    Facebook
    Twitter
    Youtube
    Instagram

    • About Quanta
    • Archive
    • Contact Us
    • Terms & Conditions
    • Privacy Policy
    • Simons Foundation
    All Rights Reserved © 2023