We care about your data, and we'd like to use cookies to give you a smooth browsing experience. Please agree and read more about our privacy policy.
Quanta Homepage
  • Physics
  • Mathematics
  • Biology
  • Computer Science
  • Topics
  • Archive

Leila Sloman

Contributing Correspondent

Latest Articles

number theory

Probability and Number Theory Collide — in a Moment

By Leila Sloman
January 12, 2023
Comment
Read Later

Mathematicians are taking ideas developed to study random numbers and applying them to a broad range of categories.

Blue numbers moving down an assembly line being picked up by mechanical claw hands.
combinatorics

From Systems in Motion, Infinite Patterns Appear

By Leila Sloman
December 5, 2022
Comment
Read Later

Mathematicians are finding inevitable structures in sufficiently large sets of integers.

A purple key drawn on a lattice of points.
explainers

How Cryptography’s Quantum-Safe Future Will Work

By Leila Sloman
November 9, 2022
Comment
Read Later

Lattice cryptography promises to protect secrets from the attacks of far-future quantum computers.

geometry

Mathematicians Discover the Fibonacci Numbers Hiding in Strange Spaces

By Leila Sloman
October 17, 2022
Comment
Read Later

Recent explorations of unique geometric worlds reveal perplexing patterns, including the Fibonacci sequence and the golden ratio.

number theory

A Numerical Mystery From the 19th Century Finally Gets Solved

By Leila Sloman
August 15, 2022
Comment
Read Later

Two mathematicians have proven Patterson’s conjecture, which was designed to explain a strange pattern in sums involving prime numbers.

combinatorics

Hypergraphs Reveal Solution to 50-Year-Old Problem

By Leila Sloman
July 14, 2022
Comment
Read Later

In 1973, Paul Erdős asked if it was possible to assemble sets of “triples” — three points on a graph — so that they abide by two seemingly incompatible rules. A new proof shows it can always be done.

Points connected by lines.
graph theory

Mathematical Connect-the-Dots Reveals How Structure Emerges

By Leila Sloman
June 23, 2022
Comment
Read Later

A new proof identifies precisely how large a mathematical graph must be before it contains a regular substructure.

An illustration of a person walking across a surface with many holes.
topology

Unimaginable Surfaces Discovered After Decades-Long Search

By Leila Sloman
June 2, 2022
Comment
Read Later

Using ideas borrowed from graph theory, two mathematicians have shown that extremely complex surfaces are easy to traverse.

Two red loops connected by a ghostly tube.
topology

How Complex Is a Knot? New Proof Reveals Ranking System That Works.

By Leila Sloman
May 18, 2022
Comment
Read Later

“Ribbon concordance” will let mathematicians compare knots by linking them across four-dimensional space.


Previous
  • 1
  • 2
Next

About the author

Leila Sloman is a math writer based in Princeton, New Jersey. She received her Ph.D. in mathematics from Stanford University in 2021, and has also written for Popular Mechanics and Scientific American. She was an intern at Quanta Magazine in 2022.
Follow Quanta
Facebook
Facebook

Twitter
Twitter

Youtube
YouTube

Instagram
Instagram

RSS
RSS

Newsletter

All Time

Most Read From Leila Sloman

This Data is Current Loading...
This Data is Current Loading...
This Data is Current Loading...
The Quanta Newsletter

Get highlights of the most important news delivered to your email inbox

Recent newsletters
Quanta Homepage
Facebook
Twitter
Youtube
Instagram

  • About Quanta
  • Archive
  • Contact Us
  • Terms & Conditions
  • Privacy Policy
  • Simons Foundation
All Rights Reserved © 2023