What's up in

Researchers are getting close to building a quantum computer that can perform tasks a classical computer can’t. Here’s what the milestone will mean.

Pure, verifiable randomness is hard to come by. Two proposals show how to make quantum computers into randomness factories.

Neven’s law states that quantum computers are improving at a “doubly exponential” rate. If it holds, quantum supremacy is around the corner.

The universe of problems that a computer can check has grown. The researchers’ secret ingredient? Quantum entanglement.

Quantum computers can’t selectively forget information. A new algorithm for multiplication shows a way around that problem.

One of the first quantum simulators has produced a puzzling phenomenon: a row of atoms that repeatedly pops back into place.

The same codes needed to thwart errors in quantum computers may also give the fabric of space-time its intrinsic robustness.

In a Paris lab, researchers have shown for the first time that quantum methods of transmitting information are superior to classical ones.

Urmila Mahadev spent eight years in graduate school solving one of the most basic questions in quantum computation: How do you know whether a quantum computer has done anything quantum at all?

Previous